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Signal Processing for Micro Inertial Sensors

Allen R. Stubberud and Xiao-Hua Yu
Department of Electrical and Computer Engineering

University of California, Irvine
Irvine, CA 92697-2625, USA

Abstract: In the development of the guidance and accelerometers. Micro-sensors, because of their small
control packages for unmanned vehicles, it is highly size, often have only moderate accuracy as compared
desirable to have inertial measurement sensors which to the accuracy of full-size sensors. Applications which
are small, inexpensive, low power, reliable and demand sensors with small size and low cost as well as
accurate. New technological advances in the design high accuracy, will require signal processing methods.
and construction of micro inertial sensors, such as Because of the expected low cost of the micro-sensors,
accelerometers and gyroscopes, have much promise in one approach to increased accuracy is to use a large
providing small, inexpensive, and low power devices; number of micro-sensors to measure the same quantity
however, much improvement in the reliability and, and then use statistical methods to combine the many
especially, the accuracy of these micro devices is still low accuracy measurements to generate a single high
necessary. Further major improvements in these two accuracy measurement. For many years the extended
properties will probably not be accomplished in the near Kalman filter (EKF) has been used to process output
future, thus it will be necessary to use special signal signals from inertial sensors to produce more accuracy
processing methods to provide the accuracy. One way than is possible from the raw output signals, thus it is
which has been proposed to improve the accuracy, and natural to assume that the EKF can be readily adapted
concurrently the reliability, of micro sensors is to use to the many micro-sensor problem. In this paper, a
many, perhaps one hundred or more, micro sensors on a technique is proposed in which an arithmetic average of
single chip (or a few chips) and using statistical the many outputs from a set of micro-gyroscopes is
methods to combine the individual outputs of these input to a single average EKF. Under certain simple
sensors to provide an accurate measurement. One assumptions, this can be shown to produce the desired
method of performing such a combination is through an result. Using a model of a real micro-gyroscope this
extended Kalman filter (EKF). A standard application technique was simulated for a set of ten micro-
of an EKF to an array of gyroscopes would involve at gyroscopes and the preliminary results indicate that this
least six state equations per gyroscope and the number method has promise. Continuing exploration of this
of covariance equations would be in the order of the method will include adaptive EKF methods using a
square of the product of six times the number of neural network based EKF which will allow the filter to
gyroscopes. Obviously, the 'curse of dimensionality' track correlated errors.
very quickly limits the number of sensors (gyroscopes)
which can be used. Even if the EKF for each individual Introduction. Recent developments in micro-
gyroscope is uncoupled from the rest, the number of electromechanical systems (MEMS) technology have
covariance equations is of the order of the number of led to optimistic predictions for the use of micro
gyroscopes times six squared. This can still lead to a devices in a wide range of applications. It appears that
formidable computational burden. In this paper, a new micro-sensors, in particular, have immediate
technique of applying an EKF to this problem of applicability in many fields from medical implants to
combining many sensors is proposed. By using the automobiles to aerospace vehicles. Small size plus their
common nominal model for each of the micro sensors probability of becoming very inexpensive make their
and developing a single EKF, improved accuracy is potential range of applications almost limitless.
achieved by a single EKF with the dimension of one However, in spite of small size being a major advantage
sensor. For cases in which the micro sensors are of micro-sensors, it can also be a major disadvantage.
corrupted by correlated noise (between the sensors) an In particular, in many cases, the accuracy of a sensor
artificial neural network could be added to the EKF can be controlled much easier if the sensor has large
dynamics to track the noise. Simulated examples will dimensions, because accuracy is often a function of
be discussed. dimensional ratios and controlling such ratios by

machining is easier when dimensions are larger. On the
Summary: Recent advances in the technology of other hand, if the micro-sensors can be made much
microelectromechanical systems (MEMS) has led to more inexpensively than larger machined sensors then
optimistic predictions of the potential applications of this disadvantage may be overcome by using many
various micro devices. One family of devices which relatively inaccurate, but also inexpensive, sensors as
appears to have wide applicability in many areas is the opposed to one, or a few, accurate, but much more
family of inertial sensors, including gyroscopes and expensive, sensors. Note that the use of many micro-
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sensors measuring the same quantity can also provide may have little effect on the correlated component of
reliability through redundancy at a reasonable cost. the noise. A correlated component of the noise in the

This latter point, while of considerable interest, will not output signals is to be expected if many of the sensors

be considered in this paper. Tile problem of interest are on a single chip. For example. any alignment errors

here is that of combining the outputs of several micro- in the chip manufacturing process may generate

sensors, all measuring the same quantity, so that the measurement errors in one micro-sensor which are

accuracy of the combination exceeds the accuracy of strongly correlated with all of the measurement errors

the individual micro-sensors but without requiring an on the other micro-sensors. If the manufacturing

extraordinary amount of computation. This is what will process generates alignment errors which are correlated
be referred to as the signal processing problem for from chip to chip, for example all the chips come from a

micro inertial sensors. single wafer, then this correlation may extend to all of
the micro-sensors. In this case, simple arithmetic

The signal processing problem: A sensor is a device averaging may not be effective as a signal processing

that measures a physical quantity and produces a technique.
corresponding output, typically an electrical quantity,
which is related in a known way to the physical In the application of a standard sized inertial sensor, it is

quantity. In practice, the measurement of the physical quite common to process the output of the sensor

quantity is corrupted by noise and the relationship through a Kalman filter, or more likely through an

between the physical quantity and the corresponding extended Kalman filter (EKF), to improve the accuracy

output is corrupted by another noise. The accuracy of of the measurement. If a number of inertial sensors, for

the sensor is dependent upon the magnitudes of these example, three gyroscopes and three accelerometers,

noises. The accuracy of a sensor might be improved by are combined on a single platform it is common that a

better understanding of the physics by which the sensor single extended Kalnan filter is used to generate

measures the physical quantity and how it produces the estimates of the state of the platform on which the

corresponding output and improving the process by sensors are mounted. These estimates are generally
which the sensor is manufactured or by applying much improved over the measurements which are taken

appropriate signal processing techniques to the output directly from the sensors. A similar concept could be

signal. In the area of micro-sensors, significant used to generate an estimate of the common quantity
accuracy improvements in the manufacturing process being measured by the many micro-sensors. In

will require increased costs and/or larger geometries, particular, micro inertial sensors have well developed

both of which will tend to neutralize the advantages of mathematical models and are well suited to the

such devices. Thus signal processing techniques application of an extended Kalman filter. The difficulty

applied to multiple sensor configurations are being with applying this concept to a set of many micro

examined and are expected to improve the accuracy of inertial sensors is that the dimensionality of the EKF

existing micro-sensors. This is not to imply that may become excessive. For example, if a single

improved manufacturing processes are not being gyroscope is modeled by a set of six coupled dynamic

developed; however, currently, appropriate processing equations, then six hundred equations would be needed

of micro-sensor outputs appears to be the quickest and to model one hundred gyroscopes. The resultant EKF

most feasible method of improving sensor accuracy. which uses this dynamic model would have six hundred
states and its covariance equation would have between

The simplest signal processing concept to improve two thousand and one hundred eighty thousand

micro-sensor accuracy is to manufacture one (or a few) (180,000) equations depending upon the coupling

chips with a total of many micro-sensors all of which between the various gyroscopes. Obviously, this
measure the same physical quantity. The outputs of all method of combining measurements is limited by the

of the micro-sensors are then simply averaged number of micro gyroscopes which are being used.

arithmetically. If the noises associated with the outputs
of the several micro-sensors are additive, mutually The method proposed in this paper for combining the

independent and zero mean, then the standard deviation measurements from many micro-sensors is to first

of the error of the arithmetic average is reduced by the generate the arithmetic average of the outputs of the

square root of the number of output signals. Thus, if sensors and then process this average output through an

one hundred micro-sensors are used, it is equivalent to average EKF. Consider the following standard Kalman
replacing them with a single micro-sensor with an error filter problem of estimating the state of a system defined

with one-tenth the standard deviation. However, if the by the vector-matrix equation

errors in the output signals are non-zero mean (across dx
the ensemble of micro-sensors) or if the errors are t Ax+B +w (I)

correlated across the micro-sensors, then arithmetic

averaging may not be effective. That is, the averaging where x is the system state vector, u is the system

will reduce the uncorrelated component of the noise but input vector, and w is a zero mean white noise vector
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with covariance Q . A and B are the matrices which automobile), thus the plate can rotate, to a limited
define the system. The state vector is measured extent, about all three axes relative to the housing and,
through a noisy linear transformation thus also rotates relative to the larger rigid body.

y = Cx + v (2) However, it is assumed that that any translation relative
where C defines the transformation and v is a zero to the larger rigid body is negligible. Because the axes
mean white noise with covariance matrix R. Suppose rotate with the plate, the products of inertia of the plate
that the system state can also be measured from a set of in this coordinate system are zero. The plate is forced
N other systems defined by to oscillate at a constant amplitude and frequency about

the z-axis by a sinusoidal torque applied by an electric-d Axi + Bu + w, i = 1,2,-.-, N field. The x-axis is the input axis through which the

dt I input angular velocity of the large rigid body is coupled
where x is the state vector and w is the white noise into the plate through the support wires. The ,-axis is

i i the output axis of the gyroscope from which a
vector of the ith system. The states of these systems measurement of the input angular velocity is obtained as
are measured through a set of N measurement some function of the periodic motion induced about the
equations y-axis by the angular motions about the x-axis and the

Yi = Cxi + vi, i = 1,2,..., N z-axis. Under these conditions, Euler's equations of

where vi is the white noise of the ith measurement, motion can be used to develop a dynamic model of the
plate. The plate is symmetric in the x-y plane so that

An arithmetic average of the outputs is formed as the moments of inertia about the Y-axis and the y,-axis
N C( I X. i) I N are equal. The moment of inertia about the z-axis is

Ni •Yi + N =1V.much larger than these two. We define the angular
iN =)Iiposition of the plate from its 'rest' position by the

or y = C + V (3) angles O,,, and 0- measured about the x, y, and z
Now averaging the N differential equations results in axes. A sinusoidal torque, T(, is applied to the plate
the average differential equation about the z-axis producing a periodic motion about the

di- z-axis. The other torques about the z--axis are a
d i damping torque and a spring torque, both due to the

In the stochastic sense equation (3) is identical to mechanical properties of the supporting wires along the
equation (2) and equation (4) is identical to equation x-axis and the )y-axis. The applied torques about the y-
(I), except that the noise W has a covariance of axis and the x-axis are a damping torque and a spring
Q /N and the noise V has a covariance of R / N . torque due to the supporting wires and the damping
Thus if estimating the system response to the input u is coefficients and spring constants are assumed to be
of primary interest, the effect of the white noises is equal about each axis because of the symmetry of the
reduced if the average system output is used to drive plate in the x - y plane. When the housing is rotated at
the Kalman filter rather than the measurement in an angular rate of Q, rad/sec about the x-axis, a
equation (2). In the following example, the problem of torque 7,. (t) is transmitted to the plate by the support
estimating the output of a set of ten micro-gyroscopes
all measuring the same angular rate using a single EKF wires and consists of a damping torque and a spring
was simulated and compared with the method of torque
applying ten EKFs with output averaging C. (Q 0), and K, (f Q~t )dt' - 0,

Mathematical model of a micro-gyroscope: In this 0
section, the mathematical model of a micro gyroscope is where C( and K, are the damping coefficient and the
presented. The parameters used later in the simulation s
are taken from an actual experimental micro-gyroscope spring constant about the v-axis. The input rate
developed by Irvine Sensors, thus the simulation induces a motion in the y-axis and Q, is determined
represents the real world as nearly as we were able to from the measurement of the angular motion about the
model it. The gyroscope is composed of a small rigid ),-axis. Based on these conditions , Euler's equations
plate attached to a housing through a set of four thin can be written as
orthogonal support wires. A set of orthogonal axes is
fixed to the plate with the origin at the center of mass of + a, .,. + aO., + AO.O.._ =a .+ aof.,(1')dl'
the plate and the three axes are aligned with the 0
principal axes of the plate. The x-axis and the v-axis lie + a,. +a000, -A 0
in the plane of the plate and are assumed to be aligned
with the support wires. In an application, the housing is 0 + hb• + boo: = 7;, sin co0
attached firmly to a much larger rigid body (perhaps an
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where the coefficients are determined from the various where the variable x, has no specific physical meaning
physical parameters of the gyroscope. The desired Two additional equations can provide a simple
output of the gyroscope is the input angular rate output demodulation of the variable
QJ.(I). This is obtained by measuring and processing X. (') = ( , (1)
the angular rate 0 (t).

y to generate Q (1). These equations are

Steady-State Operation: Assuming that the rate of x

change of the angular rate input Q,,(I)to the -'7 = Y9

gyroscope is slow relative to the rates of change is -coX 7 - c'xs + COX 4 sinflo(
induced by tile applied torque 7(, sin co0, and that the where the coefficients were chosen to provide low pass

nonlinear effects in the x and y' equations are relatively filtering with a corner frequency at (oo / 10 rad/sec.
small, phasor analysis can be used to determine a The output measurement is now the modulator output,

steady-state value of the output (t) as that is,

:(t) = X.•()

0, () = A oGz (w )G (a(0)o• 2cO sill o) Ideally, in steady state, this is related to Q (t) by the
0 Oz 0 y 0 Ox 0 x

where relationship developed in the steady-state section and
the demodulator gain by

G (o0) - K
z 0 o - )2 +(wob 1 ) 2  9) (i)=-x (I)

0 01 x 27

and Design Coefficients. The design coefficients for the
gyroscope simulated in this paper are

G 0 a, =I.8621 x 10'
Y( - (o )2 + (o 0  )2 341 0 0) 0a1 = 3.4483) x 1 0 '

Note that the phase shift of the phasor is not needed
and has been ignored. Note that this equation could be = 9.3750 × 10
written ht = 3.3750 x 10"

0) (I)=KQ1 (/)sina t .57

.0 A = 4.5172

where K is a constant. Thus 0 (t) is sine wave and
(0 0 = 2f7 x 3000 = 1.8850 x 104 rad / sec

sin OOt1 modulated by the applied angular rate 0 x (1). which is near the resonant frequency of the linear part

The angular rate can thus be obtained by a simple of the jv-axis equation. The demodulator coefficients
amplitude modulation (AM) demodulator. are

State Equations for the Gyroscope: For a Kalman Cl = 1200T and co = (6007r)-2

filter the equations for the gyroscope must be written in The magnitude 7,' of the forcing function was chosen
the form of state equations. To put the three equations to be
into a state equation form, let 10 = 1.5 x 10"

X2 = v) which generates a maximum steady state motion about

x3= 0, x4 = 23 = 0 the x-axis of a fraction of a radian The resulting state
"equations using these coefficients was used as the 'truth

X 5 = 0_ x, = 5 = model' for the simulations which are discussed later.

then the state equation representation for the gyroscope Kalnan Filter Equations To generate a set of
is

A1 =-Li0 X• + aKalman filter equations, the following modification to
- the gyroscope state equations had to be made. Let:

'\2 = X -Ux,2 - Ax 4 X6 + a] 0.1  Ox = x. +/?I

xý3 = X4 where n, is the unknown difference between the input

x4 =-oIX3 - 01X4 + Ax, x, and the state x, 0,- . The resulting state

ý5 = .X6, equations can now be rewritten:

.k6 = -bo)x5 - hi x6 + 710 sin (o 01



B 11-5

1 = a.onI 0 0 0 0 0 0 0 0

k2 =x 1 -Ax 4x 6 +a1 n1  1 0 0 0 0 0 0 0

23 = x4 0 0 0 1 0 0 0 0

"X4 = -aOx 3 -a a1 X4 + Ax2X6 + n4 F +0 0 -ao -al 0 0 0 0
25 = x6 0 0 0 0 0 1 0 0

' 6• = -hbx 5 - bhx6 + Y1 sin cf nt + 6  0 0 0 0 -bo -bh 0 0

with the demodulator equations 0 0 0 0 0 0 0 1
A 7 =X8 0 0 0 0 0 0 -cO-c

"ýg = -C OX7 - CI X8 + CO5 4 sin coot + n.
The measurement equation is given by and

= X7 + V

The quantities n1,, n4 ,n 6 ,r 8 and v are random 0

quantities which in the development of the extended - Ax 4x 6
Kalman filter (EKF) are assumed to be white noises. 0
As almost four decades of usage has shown the EKF is
robust to inaccuracies in the assumptions on the system Ax 2 X6
noises. For convenience, the gyroscope model is now f1 (x) = 0
rewritten in the vector-matrix form:

i = f(x) + Gn + g(x) sinool 0

.: = hTX + V 0

where 0
xI0 0

x2 0 0 The noise statistics, which are normally determined
empirically, are chosen to have the following properties,

30 0 R is a nonzero, positive scalar and Q is a nonzero,

x4 0 0 positive definite 4 x 4 matrix assumed to be diagonal
x = g(x) = h 0 and given by:

X5  0 00 0

x7 0 1 00 q22 0 0

_Xg8 'C OX4  _0 0 0 q33 0

ao 0 0 0- 0 0 0 q44

a] 0 0 0 where q1 1 > 0 q22 > 0 q33 > 0 q44 > 0

0 0 0 0 rn11 The extended Kalman filter equations can now be

0 1 00 n<4 written as
G= 0 0 0 0 n= /6

0 0 1 0 x] = f(i) + k(z - h 'i) + g(i) sin c 0t

0 0 0 0 where ,, the output of the Kalman filter, is the

0 0 0 1 estimate of the combined state of the gyroscope and the
demodulator. The estimate of the applied torque

and Q,(1) is given by the state estimate .i7 ()).
f(x) = Fx + fI (x) k = Ph / R is the Kalman gain vector and the error

where covariance P is calculated by the equation
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Ph h r p 0 02,,mato of OCrp,,, N0,o- reo Output (I EKF C--)

=FP +PF- Ph + GQG'002
1- 002

where 0015
F F F10015

and
0 0 0C 000 0 00 0 0 0 0 0 0 0 { i

000 0 0 0 00
0 A0 0 0 0 A.0 0 0 000,

S-_0015
0 0) 0G0I 5 002 0 30,14O 005 0 0C007

0 0 0 0 0 0 0 0T0 nSrd

0 0 0 0 0 0 0 0 The technique of developing individual estimates of the
0applied angular rate using one EKF for each of the ten

micro-gyroscopes and averaging the outputs was also

0 0 0 0 0 0 0 0 simulated and compared to the truth model. These
results are shown in the figure below in which the

These equations were used to simulate the EKFs used dotted line is the noise-free Output and the solid line is

in the simulations. the estimate. The standard deviation of the time

average of the steady state error is (2.1058)10-
Simulation results: The technique described in this
paper of averaging the output measurements from Est1ateofOuiputvs Nio,-foseOuItput(I0EKFCaso)

several micro-gyroscopes and processing the average

output in a single EKF to estimate the common angular 00'
rate applied to each micro-,,yroscope was simulated
using ten micro-gyroscopes with the micro-gyroscope 1,

model described earlier. The applied angular rate input 001 o

(I) was a sine wave with a maximum amplitude of a 0oo0
one-tenth rad/sec and a frequency of one hundred Hertz -
.A measurement noise with a standard deviation of
twenty per cent of the maximum of the steady-state 000o5 V V/
value (.012) of the output signal of the truth model -o0 1
driven by this input was used to corrupt the output of V0,
each micro-gyroscope. The output of this simulation o 001 002 003 004 005 00 o071 Time Seconids

was compared to the simulated output of the truth
model. The results are shown in the figure below in Finally, the two multiple sensor techniques were
which the solid line is the noise free output and the compared to each other. The error, compared to the
dotted line is the estimate. The standard deviation of truth model, was generated for each and the difference
the time average of the steady state error is between these two errors is shown in the figure below.

(2 .3 6 7 2 )1 0 -4. This is anl improvement of more than 10 Error Comparison

ten times over the given measurement noise. With 25

simple averaging, an improvement of X would be 2-

expected. 1 5

S05
a0~

• I if
C_. 5

V

S5

001 002 003 004 005 006 007
Time in Seconds
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It is apparent that the two different signal processing
methods are very comparable. There seems to be only a
slight degradation of the estimate when one EKF is
used as opposed to ten EKFs. On the other hand, the
amount of computation is considerably reduced.

Conclusions: In this paper a method of improving the
accuracy of micro inertial sensors is proposed. This
technique uses multiple sensors with advanced signal
processing techniques to combine the many signals into
a single output. Two such techniques are discussed, the
first is very computationally intensive and the second is
moderately computationally intensive. In order to be
useful, the outputs generated by these techniques
should be significantly more accurate than the output of
a single sensor or even of the arithmetic average of the
outputs of many sensors. Some preliminary simulation
results indicate that both techniques improve the sensor
accuracy significantly; however, the computational
intensity of the first technique increases exponentially
with the number of sensors, which precludes it from
being used with a very large number of sensors. In the
second technique, the computational burden is
independent of the number of sensors and if it has
comparable accuracy to the first technique then is far
preferable. Early comparisons of the two techniques
indicates that the accuracies are comparable.

This research is still in a preliminary stage and definitive
conclusions are premature; however the early
simulations give results that are promising enough to
encourage further work in this area.


